ADVANCED LEVEL MATHEMATICS - Boszik PDF

11d ago
1 Views
0 Downloads
6.00 MB
17 Pages
Transcription

LEVELADVANCEDMATHEMATICS SOLUTIONS1225 EXODUS1G David BoseiluINTEGRATES PRIMEROWS 1025 11 20Partial Fractions solutionIcalet1522IIsKB102Using the cover up ruleA102to10521 2Itcz2toIz24 5C91020II9Hence5729102x 520dt294510942Xz

Evaluation of the IntegralKas cont'dHenceI Ex E Getzd109419020In txt21InIgePleasewasat 227C 55lo210 In 2x9 21tC51tCwhereCEIRthat this formulationnoteI942dabdocta Inlaxtblutilized to solve this problemtk

Partial Fractions DecompositionIcblet2xIAx x2t 7Ax2xComparingliketterms7Bt7 AxAt C 23IIst CIIIIIttB 22 713Cat D x2t21 713Get DXtB D x't 7 AxttyieldIBIA277A2At COtCBt DOsD27Hence2KIx2 x't 7Ex2kt I7627713

1lbEvaluating the indefinite integralusing the2xpartialJ x'GetfEx1fractions results abovedoc7Izz2x t 1 doc7 Get 7zlnlxl ffx 2dx tf.chf7dxtIJthxlnxIxtizIn Get 7In Gc27twhere CisconstantfJtananofdxyzdxEptarbitraryintegrationC

Icasince the given integrand isitsreduced23tasthenimproperfollows2 3182221 4X't 4224228Klt4I48221 42xI284As suchI3434doc2xtXtXtIffJzx't z tandocdoc4zfzzdxZz4ydx4h Get4where C c IRC

2calUsing IntegrationLetbyxuPartsZdu2x docVexenddusuch thatIx2eJeUsing IntegrationletSobyUdu2xeParts once2Kex daEqn I becomesiiiJfeedoccexedocdxamoreIdu2dxve

Icaicont'dJolie doce2eeyeC20.718282lbUsing Partstx dxduIn xx'doctox6vHencex'luxdocIxItfIn26h2 In 1664In 2c5dx2toffeeIzz 2b lbC

2lbicont'dfix'Inx doc31g In 2323 In2cal Using Integration fileidxfzxcx.isIzficx i5dx3Ix312.1 ofFfaEsDEor

HdUsing IntegrationletUbyParts3Kfdxcos 2xdudu3 DXIsai 2xvThereforeJo3x cos 2xDXzzxsinsix3Ot3C4o24l3 xC 243ZJxlsin 2x docf Zyfoos 2xcosIfcos o

Given3calthenExt 215Ctsinkthat defines the antiderivativeExt 2z g4wegetIzsink doct5g eetJzXtdoctacoslysin 2xtCthe trig identityIcos 2x2Isinkused sincettthis problemintegrate5Ct2 122kt 5wastdocdayJyouIn4applying the fundamental theorem of calculusbyFTE0itcissinkcos 2xstraightforwardtobig functions with linear inner functions

Similar to3 bSomore36weprovidedapply FTConcewithSeaTacfIlthen16 x2off docyaseitanItankxIztanczx16 K2daJjdxarcsin EewherePleaseTurnOverPTOtCC isaconstant

4This problem exemplifies the geometricFundamentaltheofThe requiredTheoremofcalculus FETE 2isarea1h7JoydocAreafot'dt72kt2hr7In 7o721Mtzi 4g3496square unitsy anaisToFµ7aAyO1h7xformaxis

5aRecall the Product to SumidentitiesThenI sin 80 cos 6080 60sin 80 60dosin440 t sink d did65449CtrigdoJ tz sintJPasLgcos 140zoostot7 cos 20C

For this problem5lbarationalizing theNUMERATORThis will changeallasustocos xtriguseintegrationunique strategybywillofbe usedto cos3c andidentitiesassubstitution andwellorinspectionHereJJIwegowsoc docJJlEsseJlwJI t cos cIsin kJ J I t cos cJJ Isinkt cos cdocJI t GSKdocdadocH

5Cbcont'dLet ududusinx docsink DXsubstation into EqubySoJJIt cos clcosadocduJJuduItk2 TUtk2JIIzKIcosxK is an arbitraryconstant of integrationwhere

5lbcommentspleasenote thatcould beusedsixJ Jlt Wsocadirect approachmoreto solveDXJEEN EifcossuixdxbetIitcos ckbet IkHereweobserve the2JformulationgcuJugluttedKEIRIt cosxIn gcutCCnnII

issii

ADVANCED LEVEL MATHEMATICS SOLUTIONS 1225 EXODUS1 G David Boseilu WS10 INTEGRATES PRIMERO 25 11 20 Ica Partial Fractions solution let 2 15 2 IIs K 2 Using the cover up rule A 10 B 10 2 5 21 2 c z 2 57 2 X z to It 2 to 4 5 10 Iz 10 C9 20 II 9 9 Hence 10 20 10 2x 5 dt2 94 5 94 2. Kas cont'd Evaluation of the Integral Hence I Ex E Getz d 10 20 94 ...